A Note on Sums of Independent Random Variables

نویسندگان

  • Stephen Montgomery-Smith
  • STEPHEN MONTGOMERY-SMITH
چکیده

provided (Xn) are either symmetric or positive, and in the first case p ≥ 2, and in the second case p ≥ 1. The main novelty here is the fact that, contrary to the classical inequalities, the constants here are independent of p. Certain particular cases of Lata la’s result had been known earlier (see e.g. Hitczenko (1993), Gluskin and Kwapień (1995) or Hitczenko, Montgomery-Smith and Oleszkiewicz (1997)), but they can be easily deduced from Lata la’s inequality. Of course, the ultimate goal is to obtain bounds on the tail probabilities for sums of random variables. Lata la’s result prompted us to investigate that problem. This program has been completed; our methods, which are based on estimates for the decreasing rearrangement of a random variable, work in a rather general setting. As a result we were able to obtain extensions of Lata la’s result in various directions. The details of that approach will be presented elsewhere. The goal of this note is quite different; we will present a very simple argument that allows

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the bounds in Poisson approximation for independent geometric distributed random variables

‎The main purpose of this note is to establish some bounds in Poisson approximation for row-wise arrays of independent geometric distributed random variables using the operator method‎. ‎Some results related to random sums of independent geometric distributed random variables are also investigated.

متن کامل

Asymptotic Behavior of Weighted Sums of Weakly Negative Dependent Random Variables

Let be a sequence of weakly negative dependent (denoted by, WND) random variables with common distribution function F and let be other sequence of positive random variables independent of and for some and for all . In this paper, we study the asymptotic behavior of the tail probabilities of the maximum, weighted sums, randomly weighted sums and randomly indexed weighted sums of heavy...

متن کامل

XXXX A Note on Sums of Independent Random

In this note a two sided bound on the tail probability of sums of independent, and either symmetric or nonnegative, random variables is obtained. We utilize a recent result by Lataa la on bounds on moments of such sums. We also give a new proof of Lataa la's result for nonnegative random variables, and improve one of the constants in his inequality.

متن کامل

On the Complete Convergence ofWeighted Sums for Dependent Random Variables

We study the limiting behavior of weighted sums for negatively associated (NA) random variables. We extend results in Wu (1999) and a theorem in Chow and Lai (1973) for NA random variables.

متن کامل

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

Let  be a sequence of arbitrary random variables with  and , for every  and  be an array of real numbers. We will obtain two maximal inequalities for partial sums and weighted sums of random variables and also, we will prove complete convergence for weighted sums , under some conditions on  and sequence .

متن کامل

Strong Laws for Weighted Sums of Negative Dependent Random Variables

In this paper, we discuss strong laws for weighted sums of pairwise negatively dependent random variables. The results on i.i.d case of Soo Hak Sung [9] are generalized and extended.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999